Artwork Creation Guide
This tutorial will guide you through implementing AI-powered artwork creation using TeleAgent's artwork generation system.
Overview
We'll create a system that: 1. Generates AI artwork using DALL-E 2. Implements artwork critique and refinement 3. Manages artwork storage and retrieval 4. Handles style customization 5. Provides quality control
Prerequisites
- Completed Basic Bot Setup
- OpenAI API key for DALL-E
- IPFS or similar storage solution
- Basic understanding of image generation
Project Structure
artwork_system/
├── generators/
│ ├── artist.py
│ ├── critic.py
│ └── dalle_client.py
├── storage/
│ ├── ipfs_storage.py
│ └── metadata.py
├── styles/
│ ├── style_manager.py
│ └── templates.py
└── main.py
Step 1: Creative Artist Setup
# generators/artist.py
from teleAgent.models.agent_model.artwork_creation import CreativeArtistAgent
from teleAgent.models.agent_model.artwork_creation.dalle_draw import DalleDrawer
class ArtworkCreator:
def __init__(self, config: dict):
self.artist = CreativeArtistAgent(
character_profile=config["profile"],
dalle_config=config["dalle"],
llm_config=config["llm"]
)
self.drawer = DalleDrawer(config["dalle"])
async def create_artwork(self, prompt: str, style: dict = None) -> dict:
"""Generate artwork from prompt with optional style"""
try:
# Enhance prompt with artistic elements
enhanced_prompt = await self.artist.enhance_prompt(
prompt,
style=style
)
# Generate initial image
artwork = await self.drawer.generate_image(enhanced_prompt)
# Get artwork critique
critique = await self.artist.critique_artwork(artwork)
# Refine if needed
if critique["score"] < 0.8:
artwork = await self._refine_artwork(
artwork,
critique["suggestions"]
)
return {
"image_url": artwork["url"],
"prompt": enhanced_prompt,
"metadata": artwork["metadata"],
"critique": critique
}
except Exception as e:
logger.error(f"Artwork creation failed: {e}")
raise
Step 2: Artwork Critic Implementation
# generators/critic.py
class ArtworkCritic:
def __init__(self, config: dict):
self.llm_config = config["llm"]
self.quality_threshold = config["quality_threshold"]
async def evaluate_artwork(self, artwork: dict) -> dict:
"""Evaluate artwork quality and provide feedback"""
try:
# Analyze composition
composition_score = await self._analyze_composition(artwork)
# Analyze style consistency
style_score = await self._analyze_style(artwork)
# Analyze technical quality
technical_score = await self._analyze_technical_quality(artwork)
# Calculate overall score
overall_score = (
composition_score * 0.4 +
style_score * 0.3 +
technical_score * 0.3
)
# Generate improvement suggestions
suggestions = await self._generate_suggestions(
artwork,
{
"composition": composition_score,
"style": style_score,
"technical": technical_score
}
)
return {
"score": overall_score,
"composition_score": composition_score,
"style_score": style_score,
"technical_score": technical_score,
"suggestions": suggestions
}
except Exception as e:
logger.error(f"Artwork evaluation failed: {e}")
raise
Step 3: Style Management
# styles/style_manager.py
class StyleManager:
def __init__(self):
self.available_styles = {
"impressionist": {
"brush_strokes": "visible, loose",
"color_palette": "vibrant",
"lighting": "natural, outdoor"
},
"minimalist": {
"composition": "simple, clean",
"color_palette": "limited",
"details": "essential only"
},
"fantasy": {
"elements": "magical, surreal",
"color_palette": "ethereal",
"atmosphere": "mystical"
}
}
async def apply_style(self, prompt: str, style_name: str) -> str:
"""Apply selected style to prompt"""
if style_name not in self.available_styles:
raise ValueError(f"Unknown style: {style_name}")
style = self.available_styles[style_name]
# Enhance prompt with style elements
enhanced_prompt = f"{prompt}, in {style_name} style, "
enhanced_prompt += f"with {style['brush_strokes']} brush strokes, "
enhanced_prompt += f"using a {style['color_palette']} color palette"
return enhanced_prompt
Step 4: Storage Implementation
# storage/ipfs_storage.py
from ipfs_client import IPFSClient
class ArtworkStorage:
def __init__(self, config: dict):
self.ipfs = IPFSClient(config["ipfs_endpoint"])
self.metadata_store = {}
async def store_artwork(self, artwork: dict) -> str:
"""Store artwork and metadata in IPFS"""
try:
# Store image
image_cid = await self.ipfs.add_file(artwork["image"])
# Prepare metadata
metadata = {
"title": artwork.get("title", "Untitled"),
"description": artwork["prompt"],
"image": f"ipfs://{image_cid}",
"attributes": {
"style": artwork.get("style", "default"),
"creation_date": datetime.now().isoformat(),
"critique_score": artwork["critique"]["score"]
}
}
# Store metadata
metadata_cid = await self.ipfs.add_json(metadata)
# Update local store
self.metadata_store[metadata_cid] = metadata
return {
"image_cid": image_cid,
"metadata_cid": metadata_cid
}
except Exception as e:
logger.error(f"Storage failed: {e}")
raise
Step 5: Command Implementation
# main.py
class ArtworkCommands:
def __init__(self, client: TelegramClient):
self.client = client
self.creator = ArtworkCreator(config)
self.storage = ArtworkStorage(config)
self.style_manager = StyleManager()
async def setup_handlers(self):
@self.client.on_command("create_artwork")
async def handle_create_artwork(message):
try:
# Parse command
args = message.text.split(maxsplit=2)
if len(args) < 2:
raise ValueError(
"Usage: /create_artwork [style] <prompt>"
)
style = args[1] if len(args) == 3 else "default"
prompt = args[-1]
# Send processing message
status_message = await self.client.send_message(
chat_id=message.chat.id,
text="🎨 Creating your artwork..."
)
# Generate artwork
artwork = await self.creator.create_artwork(
prompt,
style=style
)
# Store artwork
storage_info = await self.storage.store_artwork(artwork)
# Send result
await self.client.send_photo(
chat_id=message.chat.id,
photo=artwork["image_url"],
caption=(
f"✨ Artwork created!\n"
f"Style: {style}\n"
f"Quality score: {artwork['critique']['score']:.2f}\n"
f"IPFS: ipfs://{storage_info['image_cid']}"
)
)
except Exception as e:
await self.client.send_message(
chat_id=message.chat.id,
text=f"❌ Failed to create artwork: {str(e)}"
)
Best Practices
-
Quality Control ```python async def ensure_quality(artwork: dict) -> bool: """Verify artwork meets quality standards""" # Check resolution if not meets_resolution_requirements(artwork["image"]): return False
# Check style consistency if not verify_style_consistency(artwork): return False
# Check content safety if not verify_content_safety(artwork): return False
return True ```
-
Resource Management ```python class ResourceManager: def init(self): self.api_calls = 0 self.last_reset = time.time()
async def check_resources(self): """Check and manage API usage""" # Reset counter if needed if time.time() - self.last_reset >= 3600: self.api_calls = 0 self.last_reset = time.time()
# Check limits if self.api_calls >= MAX_API_CALLS: raise ResourceLimitError("API call limit reached") self.api_calls += 1
```
-
Error Recovery
python async def handle_generation_error(error: Exception, context: dict): """Handle artwork generation errors""" if isinstance(error, APIError): # Retry with different parameters return await retry_with_fallback(context) elif isinstance(error, QualityError): # Try regenerating with enhanced prompt return await regenerate_with_improvements(context) else: raise
Testing
# test_artwork.py
@pytest.mark.asyncio
async def test_artwork_creation():
# Setup
creator = ArtworkCreator(test_config)
# Test basic creation
artwork = await creator.create_artwork(
"A serene mountain landscape"
)
assert artwork["critique"]["score"] >= 0.8
# Test style application
styled_artwork = await creator.create_artwork(
"A serene mountain landscape",
style="impressionist"
)
assert "impressionist" in styled_artwork["prompt"].lower()
Troubleshooting
- Generation Issues
- Check API key validity
- Verify prompt formatting
-
Monitor rate limits
-
Quality Issues
- Review critique scores
- Check style consistency
-
Verify image resolution
-
Storage Issues
- Check IPFS connection
- Verify metadata format
- Monitor storage space
Next Steps
- Implement advanced features:
- Style transfer
- Image editing
-
Animation support
-
Add enhancement options:
- Resolution upscaling
- Color correction
-
Detail enhancement
-
Explore integrations:
- Social media sharing
- NFT creation
- Print-on-demand services