Performance Optimization
This guide covers advanced techniques for optimizing the performance of your DegentCivil simulation.
Performance Overview
DegentCivil's performance is influenced by several key factors:
- Number of active characters
- Complexity of character states
- Memory system usage
- Database operations
- LLM API calls
- Event processing
- Physical simulation calculations
Optimization Strategies
1. Character Management
Batch Processing
def process_characters_in_batches(characters, batch_size=100):
for i in range(0, len(characters), batch_size):
batch = characters[i:i+batch_size]
process_character_batch(batch)
State Optimization
class OptimizedState(BaseState):
def __init__(self):
super().__init__()
self.cached_data = {}
def execute(self, character):
if self.should_update_cache():
self.cached_data = self.heavy_computation()
return self.cached_data
2. Memory System
Memory Pruning
def optimize_memory(character):
# Remove old, less relevant memories
character.memory.prune_old_memories(threshold_days=30)
# Compress similar memories
character.memory.compress_similar_memories()
# Archive rarely accessed memories
character.memory.archive_inactive_memories()
Efficient Querying
def query_memory(character, query, limit=10):
# Use indexed fields for faster queries
return character.memory.query(
query,
limit=limit,
use_cache=True,
index_fields=['timestamp', 'importance']
)
3. Database Optimization
Connection Pooling
from app.database import Database
class OptimizedDatabase(Database):
def __init__(self):
self.connection_pool = create_connection_pool(
min_connections=5,
max_connections=20,
idle_timeout=300
)
Query Optimization
class QueryOptimizer:
def __init__(self):
self.query_cache = {}
def optimize_query(self, query):
# Use prepared statements
if query in self.query_cache:
return self.query_cache[query]
# Analyze and optimize new queries
optimized = self.analyze_and_optimize(query)
self.query_cache[query] = optimized
return optimized
4. LLM Integration
Token Management
class TokenManager:
def __init__(self, max_tokens=4096):
self.max_tokens = max_tokens
def optimize_prompt(self, prompt):
# Truncate and optimize prompt to fit token limit
return self.truncate_to_token_limit(prompt)
def batch_requests(self, prompts):
# Combine similar prompts to reduce API calls
return self.combine_similar_prompts(prompts)
Response Caching
class LLMCache:
def __init__(self):
self.cache = {}
def get_response(self, prompt):
cache_key = self.generate_cache_key(prompt)
if cache_key in self.cache:
return self.cache[cache_key]
response = self.call_llm_api(prompt)
self.cache[cache_key] = response
return response
Monitoring and Profiling
1. Performance Metrics
class PerformanceMonitor:
def __init__(self):
self.metrics = {
'character_updates': [],
'memory_operations': [],
'database_queries': [],
'llm_calls': []
}
def record_metric(self, category, duration):
self.metrics[category].append({
'timestamp': time.time(),
'duration': duration
})
def analyze_performance(self):
return {
category: self.calculate_statistics(data)
for category, data in self.metrics.items()
}
2. Profiling Tools
import cProfile
import pstats
def profile_simulation(simulation, duration):
profiler = cProfile.Profile()
profiler.enable()
simulation.run(duration)
profiler.disable()
stats = pstats.Stats(profiler).sort_stats('cumulative')
return stats
Memory Management
1. Memory Pooling
class MemoryPool:
def __init__(self, initial_size=1000):
self.pool = [None] * initial_size
self.available = set(range(initial_size))
def allocate(self):
if not self.available:
self.expand_pool()
return self.pool[self.available.pop()]
def release(self, index):
self.available.add(index)
2. Garbage Collection
import gc
def optimize_memory_usage():
# Run garbage collection
gc.collect()
# Disable automatic garbage collection
gc.disable()
# Manual collection at specific intervals
def scheduled_gc():
gc.collect()
schedule_next_gc()
Configuration Optimization
1. Tuning Parameters
class SimulationConfig:
def __init__(self):
self.update_interval = 0.1 # seconds
self.max_characters = 1000
self.memory_limit = 1000000 # bytes
self.cache_size = 10000
self.batch_size = 100
2. Dynamic Adjustment
class DynamicOptimizer:
def __init__(self, simulation):
self.simulation = simulation
def adjust_parameters(self):
# Monitor system resources
cpu_usage = self.get_cpu_usage()
memory_usage = self.get_memory_usage()
# Adjust parameters based on usage
if cpu_usage > 80:
self.reduce_update_frequency()
if memory_usage > 80:
self.clear_caches()
Best Practices
- Profile First
- Identify bottlenecks
- Measure impact of changes
-
Set performance baselines
-
Optimize Incrementally
- Make one change at a time
- Measure impact of each change
-
Document improvements
-
Balance Resources
- CPU vs Memory usage
- Network vs Local processing
-
Storage vs Computation
-
Cache Strategically
- Identify frequently accessed data
- Set appropriate cache sizes
-
Implement cache invalidation
-
Monitor Continuously
- Track performance metrics
- Set up alerts
- Regular optimization reviews